Download our free SNMP White Paper. Featuring SNMP Expert Marshall DenHartog.
This guidebook has been created to give you the information you need to successfully implement SNMP-based alarm monitoring in your network.
1-800-693-0351
Have a specific question? Ask our team of expert engineers and get a specific answer!
Sign up for the next DPS Factory Training!
Whether you're new to our equipment or you've used it for years, DPS factory training is the best way to get more from your monitoring.
Reserve Your Seat Today
Part 1: An introduction to SNMP
Part 2: The Management Information Base (MIB)
Part 3: Understanding packet types and structure
Part 4: Layered communication
In the last issue of the Protocol, we began a series on the Simple Network Management Protocol (SNMP). In this issue, we will discuss the structure and use of the Management Information Base (MIB).
Each SNMP element manages specific objects with each object having specific characteristics. Each object / characteristic has a unique object identifier (OID) consisting of numbers separated by decimal points (i.e., 1.3.6.1.4.1.2682.1). These object identifiers naturally form a tree as shown in figure 1. The MIB associates each OID with a readable label (i.e., dpsRTUAState) and various other parameters related to the object. The MIB then serves as a data dictionary or code book that is used to assemble and interpret SNMP messages.
When an SNMP manager wants to know the value of an object / characteristic, such as the state of an alarm point, the system name, or the element uptime, it will assemble a GET packet that includes the OID for each object / characteristic of interest. The element receives the request and looks up each OID in its code book (MIB). If the OID is found (the object is managed by the element), a response packet is assembled and sent with the current value of the object / characteristic included. If the OID is not found, a special error response is sent that identifies the unmanaged object.
When an element sends a TRAP packet, it can include OID and value information (bindings) to clarify the event. DPS remote units send a comprehensive set of bindings with each TRAP to maintain traditional telemetry event visibility. Well-designed SNMP managers can use the bindings to correlate and manage the events. SNMP managers will also generally display the readable labels to facilitate user understanding and decision-making.